×

正在处理。。。

即刻使用手机阅读

互联网 机器学习方法

作者:李航 字数:30.5万字 出版社:清华大学出版社

价格:9660阅饼

免费试读 购买
扫一扫 扫一扫

机器学习是以概率论、统计学、信息论、最优化理论、计算理论等为基础的计算机应用理论学科,也是人工智能、数据挖掘等领域的基础学科。《机器学习方法》全面系统地介绍了机器学习的主要方法,共分三篇。第一篇介绍监督学习的主要方法,包括感知机、k近邻法、朴素贝叶斯法、决策树、逻辑斯谛回归与最大熵模型、支持向量机、Boosting、EM算法、隐马尔可夫模型、条件随机场等;第二篇介绍无监督学习的主要方法,包括聚类、奇异值分解、主成分分析、潜在语义分析、概率潜在语义分析、马尔可夫链蒙特卡罗法、潜在狄利克雷分配、PageRank算法等。 第三篇介绍深度学习的主要方法,包括前馈神经网络、卷积神经网络、循环神经网络、序列到序列模型、预训练语言模型、生成对抗网络等。书中每章介绍一两种机器学习方法,详细叙述各个方法的模型、策略和算法。从具体例子入手,由浅入深,帮助读者直观地理解基本思路,同时从理论角度出发,给出严格的数学推导,严谨详实,让读者更好地掌握基本原理和概念。目的是使读者能学会和使用这些机器学习的基本技术。为满足读者进一步学习的需要,书中还对各个方法的要点进行了总结,给出了一些习题,并列出了主要参考文献。

快来抢沙发~

快来说两句,抢沙发

看过的人还看

获取掌阅iReader

京ICP备11008516号 (署)网出证(京)字第143号 京ICP证090653号 京公网安备11010502030452 营业执照 广播电视节目制作经营许可证 网络文化经营许可证 电子出版物制作许可证 出版物经营许可证

2015 All Rights Reserved 掌阅科技股份有限公司 版权所有

不良信息举报:jubao@zhangyue.com 举报电话:010-59845699